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Abstract. Given multiband photometric data from the SDSS DR6, we esti-
mate galaxy redshifts. We employ a Random Forest trained on color features and
spectroscopic redshifts from 80,000 randomly chosen primary galaxies yielding a
mapping from color to redshift such that the difference between the estimate and
the spectroscopic redshift is small. Our methodology results in tight RMS scat-
ter in the estimates limited by photometric errors. Additionally, this approach
yields an error distribution that is nearly Gaussian with parameter estimates
giving reliable confidence intervals unique to each galaxy photometric redshift.

1. The Problem

We are given five bands of photometric data from the Sloan Digital Sky Survey
Data Release 6 (DR6)4. Associated with each magnitude measurement is an
error measurement and an extinction measurement used to correct the effect of
Galactic dust. For some objects we have spectroscopic redshifts, hereon denoted
zspec for a particular object. We wish to estimate photometric redshifts for non-
spectroscopic objects which are represented by the spectroscopic sample. We
are currently interested only in galaxies with 10−4 ≤ zspec ≤ 1, and we exclude
other objects which are likely to ”contaminate” our sample. We further choose
for the moment not to consider Luminous Red Galaxies (LRGs), leaving us
with some 400, 000 objects with which to train and test. In our current work
we use magnitudes available in the new Ubercal table (Padmanabhan 2007)
for each object. We subtract sequential extinction-corrected magnitudes to get
color features, named u, g, r, and i. For instance, our color u is actually the
magnitude difference u− g and so on.

2. Our Proposed Solution

Given photometric colors and spectroscopic redshifts (uj , gj , rj , ij , zspecj ) ∈ R
5,

j ∈ {1, 2, . . . , nspec} where nspec is the number of objects for which we have
spectroscopic redshifts, and assuming the existence of a function f : R

4 → R

mapping tuples (uj , gj , rj , ij) to unique zspecj values, estimating f becomes a
regression problem, and we can choose from among any number of common
methods of regression. We choose Random Forest regression.
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Random Forests (Breiman 2001) are ensembles of Classification and Re-
gression Trees (Breiman 1984) trained on bootstrap samples (Efron 1994). A
random forest is composed of one or more regression trees. Trees are grown
mostly “the normal way”, at each node making a binary partition at the “best”
point along the “best” axis. In random forests, however, rather than choosing
the best axis at each node from the input space, it is chosen from a random
subspace of the input space (Ho 1998). Nodes are split until a user-specified
minimum number of inputs (commonly five) is reached in a node and that node
is declared terminal, its value being defined as the mean of the values of its
constituent inputs in the regression case. After a tree is grown, a new input
is classified left or right starting at the root of the tree, moving down until it
reaches its associated terminal node, and that node’s value becomes the tree
estimate for that input. The ensemble regression estimate for that input is then
generally taken to be the mean of the corresponding regression tree estimates.

Our Procedure is to select a training set of 80, 000 objects uniformly
at random and without replacement from our full sample. With this we train
a random forest of 600 trees yielding for each redshift to be estimated a set
of individual tree estimates, called ẑtreei

, i ∈ {1, 2, . . . , 600}. We have several
options for aggregating these into a single forest estimate, and we choose a
trimmed mean computed as follows. For a given test input we compute ẑmean ≡
ẑtree and the RMS estimated tree error (called σ̂mean) around ẑmean over the
ẑtreei

, then compute the mean over those ẑtreei
which are within 2σ̂mean of ẑmean,

giving ẑtrim, which is our final redshift estimate for that input. Our primary
measure of accuracy is then the RMS of ẑtrim − zspec over all inputs.

Our Error Model falls out of the ensemble nature of random forests.
In the following we use the untrimmed mean for notational simplicity, but the
case with the trimmed mean differs only trivially. First define the regression
tree errors for a given input as ǫtreei

≡ ẑtreei
− zspec, i ∈ {1, 2, . . . , B}, B equal

the number of trees in the forest (600 in our case). Then define the random
forest regression error as ǫmean ≡ ẑmean − zspec, and it’s trivial to show that
ǫmean = ǫtree. One can view the tree errors as instances of identically distributed
random variables. Assuming independence between trees (or at least a way to
correct for dependence), one can model the tree errors as random variables

εtreei

iid∼ F(µ, σ), i ∈ {1, 2, . . . , B}, with F some unknown distribution with
parameters µ and σ unique to each input. Then the mean of these random
variables is itself a random variable, call it εmean, and the Central Limit Theorem
gives us that εmean ∼ N(µ, σ/

√
B), thus we have a distribution for the random

forest regression error for that input and we have convenient plugin estimates
for its parameters. We then can further say that

εmean − µ

σ/
√
B

∼ N(0, 1). (1)

In practice we won’t have zspec for most objects, however we do find that our
estimation error is zero mean (or, rather, insignificantly non-zero mean), so the
best easy estimate we have for µ is zero. If, for a given input, we knew some
better value for µ, it would mean our forest didn’t utilize some information, and
Figure 1b shows this not to be the case. Our estimate tells us nothing about
whether we over- or under-estimated the actual value; either outcome is equally
likely conditioned on our redshift estimate. But we do get bias as a function of
zspec, and correcting this bias is a problem to be dealt with in future work.
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Figure 1. a. (left) Photometric vs. spectroscopic redshift for 10,000 test
objects. b. (right) Mean error for 10,000 test objects in eight bins vs. photo-
metric redshift with bars marking region containing 34% of errors on either
side of mean.

3. Our Results

We select 10, 000 test objects uniformly at random from our held-out data (our
main sample minus our training set) and use our forest to produce redshift and
error distribution parameter estimates for each test object. The resulting RMS
error between trimmed means and corresponding zspec over these objects is 0.023.
Figure 1a characterizes our estimates, which are generally good with some slight
bias visible near the origin due to the local skewness of the underlying redshift
distribution. Figure 1b shows the binned mean difference between zRF and zspec
as a function of zRF (where zRF ≡ ẑtrim for each test input), and it indicates that
our random forest extracted nearly all the information contained in the training
data. Equation 1 above gives us a simple way to test our error distribution
parameter estimates. For each test input we set zRF = ẑtrim, ǫmean = zRF−zspec
(pardon the flagrant abuse of notation), µ = 0, σ = [ǫ2tree]

1/2, and B = 600. The
results over all test inputs should be distributed as iid standard normal random
variables. However, in our tests, it turns out that setting B = 600, the number
of trees in our forest and the number of ostensibly iid tree error estimates for
each test input, yields a vertical spike after standardizing. In fact we discover
empirically that in our case setting B = 1 yields almost a perfect Standard
Normal over all test inputs as shown in Figure 2a. We interpret this to mean
that we have strong dependence between tree error estimates, and correcting for
this algorithmically will be another subject of future work. Moving on for now
with the parameter estimates resulting from our hand-chosen value of B = 1,
we next seek to verify that for given confidence levels α, we have the expected
number of errors between the corresponding level-α critical values over all test
inputs, and the quantile-quantile plot shown in Figure 2b is pleasing in that
regard. Thus we have good reason to believe in our error distribution parameter
estimates.

4. Conclusion

Our RMS error is consistent with results from previous studies using similar
datasets, though slightly lower RMS errors from different methodologies have
been reported. We may yet gain by expanding our training data set as we have
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Figure 2. a. (left) Observed standardized error for 10,000 test objects
binned (circles) and Standard Normal distribution (curve). b. (right) Per-
cent observed standardized error within level-α critical values for 10,000 test
objects vs. 1 − α (circles) and percent error expected within level-α critical
values vs. 1 − α (line).

more than 300, 000 training objects in reserve and the computational complexity
of random forests is quite modest (in preliminary testing we trained multiple
forests with multiple training sets on a Core 2 Duo 2.0GHz MacBook in less
than one week; regression on all of our held-out data took several days using
the same machine). Future work will include better accounting for dependence
between trees, investigating more deeply the behavior of our error distributions
as a function of zspec, addressing zspec-dependent bias, and extending estimation
to objects not represented by the training data. As it is, the quality of the
estimates, the per-object error distributions, and the computational efficiency
make this approach an attractive option for photometric redshift estimation.
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